elasticstack Documentation
Release 0.1.0

Ben Lopatin

January 31, 2014

Contents

elasticstack 3
1.1 Requirements v v i e 3
1.2 Features and goals L e e e e e e 3
1.3 Stability, docs, and tests L. L e e e e 6
Installation 9
2.1 Baseinstallation e e e 9
2.2 Haystack connection Settings e e e e e e e e e 9
Configurable index mapping 11
3.1 Haystack configuration Lo e e e e e e e e e e 11
3.2 Chaning the defaultanalyzer e 12
3.3 Choosing a field-specific analyzer Lo 12
3.4 Custom analyzers and additional configuration 12
3.5 Realizing custom changes o e e e e e e e e e e 13
Django CBY style views 15
Management commands 17
5.1 show_mapping o o L e e e e e e e e e 17
5.2 show_document e e e e e 18
Contributing 19
6.1 Typesof Contributions L e 19
6.2 GetStarted! L e 20
6.3 Pull Request Guidelines i i v i it e e e e e e 20
6.4 TIPS . v o o e e e e e e e e e 21
Credits 23
7.1 DevelopmentLead e e e e e e e e e e e 23
7.2 Contributors e e e e e e e e e e 23
History 25
8.1 0.0.6 (2013-10-04) o o e e 25
8.2 0.0.5(2013-09-28) . . . o oL e e e 25
83 0.0.4 (2013-09-28) e e 25
8.4 0.0.3(2013-09-28) . . . o o i e e e e e e 25
85 0.0.2(2013-09-28) o e e 25
8.6 0.0.1 (2013-09-28) o v e e e e 25

elasticstack Documentation, Release 0.1.0

Django is the web framework for perfectionists with deadlines.

ElasticSearch is a Lucene based search engine and distributed data store with a JSON interface.
Haystack is the fastest way to map Django project models to a search index and search your site.
elasticstack is a set of ElasticSearch specific helpers for Haystack-based projects.

Contents:

Contents 1

https://www.djangoproject.com/
http://www.elasticsearch.org/
http://django-haystack.readthedocs.org/en/latest/

elasticstack Documentation, Release 0.1.0

2 Contents

CHAPTER 1

elasticstack

Version 0.1.0
Status alpha
Author Ben Lopatin (http://benlopatin.com)
Configurable indexing and other extras for Haystack (with ElasticSearch biases).

Full documentation is on Read the Docs.

1.1 Requirements

* Django: the features in elasticstack have only been tested on 1.4.x.

» Haystack: ElasticSearch support was only added in Haystack 2.x which is still in development. You’ll need to
install Haystack from source.

* ElasticSearch: presumably any newish version will do, however the only version tested against so far is 0.19.x

1.2 Features and goals

Some of these features are backend agnostic but most features have ElasticSearch in mind.

For more background see the blog post Stretching Haystack’s ElasticSearch Backend.

1.2.1 Configurable index mapping

The search mapping provided by Haystack’s ElasticSearch backend includes brief but sensible defaults for nGram
analysis. You can add change these settings or add your own mappings by providing a mapping dictionary using
ELASTICSEARCH_INDEX_SETTINGS in your settings file. This example takes the default mapping and adds a
synonym analyzer:

ELASTICSEARCH_INDEX_SETTINGS = {
"settings’: |

"analysis": {
"analyzer": {
"synonym_analyzer" : {
"type": "custom",

http://badge.fury.io/py/elasticstack
https://travis-ci.org/bennylope/elasticstack
https://crate.io/packages/elasticstack?version=latest
http://benlopatin.com
http://elasticstack.readthedocs.org/en/latest/
https://www.djangoproject.com/
http://www.haystacksearch.org/
http://www.elasticsearch.org/
http://www.wellfireinteractive.com/blog/custom-haystack-elasticsearch-backend/

elasticstack Documentation, Release 0.1.0

"tokenizer" : "standard",
"filter" : ["synonym"]
}I
"ngram_analyzer": {
"type": "custom",
"tokenizer": "lowercase",
"filter": ["haystack_ngram", "synonym"]
}I
"edgengram_analyzer": {
"type": "custom",
"tokenizer": "lowercase",
"filter": ["haystack_edgengram"]

}I
"tokenizer": {
"haystack_ngram_tokenizer": {
"type": "nGram",
"min_gram": 3,
"max_gram": 15,
}I
"haystack_edgengram_tokenizer": {
"type": "edgeNGram",
"min_gram": 2,
"max_gram": 15,
"side": "front"

}I
"filter": {

"haystack_ngram": {
"type": "nGram",
"min_gram": 3,
"max_gram": 15

}I

"haystack_edgengram": {
"type": "edgeNGram",
"min_gram": 2,
"max_gram": 15

}I

"synonym" : {

"type" : "synonym",
"ignore_case": "true",
"synonyms_path" : "synonyms.txt"

The synonym filter is ready for your index, but will go unused yet.

The default analyzer for non-nGram fields in Haystack’s ElasticSearch backend is the snowball analyzer. A perfectly
good analyzer but not necessarily what you need. It’s also language specific (English by default).

Specify your analyzer with ELASTICSEARCH_DEFAULT _ANALYZER in your settings file:

ELASTICSEARCH_DEFAULT_ANALYZER = ’synonym_analyzer’

Now all your analyzed fields, except for nGram fields, will be analyzed using synonym_analyzer.

4 Chapter 1. elasticstack

http://www.elasticsearch.org/guide/reference/index-modules/analysis/snowball-analyzer.html

elasticstack Documentation, Release 0.1.0

1.2.2 Field based analysis
Even with a new default analyzer you may want to change this on a field by field basis as fits your needs. To do so,
use the fields from elasticstack.fields to specify your analyzer with the analyzer keyword argument:

from haystack import indexes
from elasticstack.fields import CharField
from myapp.models import MyContent

class MyContentIndex (indexes.SearchIndex, indexes.Indexable) :
text = CharField(document=True, use_template=True,
analyzer='synonym_analyzer’)

def get_model (self):
return MyContent

1.2.3 Django CBYV style views
Haystacks’s class based views predate the inclusion of CBVs into the Django core and so the paradigms are different.
This makes it harder to impossible to make use of view mixins.

The bundled SearchView and FacetedSearchView classes are based on django.views.generic.edit. FormView using the
SearchMixin and FacetedSearchMixin, respectively. The SearchMixin provides the necessary search related attributes
and overloads the form processing methods to execute the search.

The SearchMixin adds a few search specific attributes:
* load_all - a Boolean value for specifying database lookups
* queryset - a default SearchQuerySet. Defaults to EmtpySearchQuerySet

e search_field - the name of the form field used for the query. This is added to allow for views which may have
more than one search form. Defaults to g.

Note: The SearchMixin uses the attribute named queryset for the resultant SearchQuerySet. Naming this attribute
searchqueryset would make more sense semantically and hew closer to Haystack’s naming convention, however by

using the queryset attribute shared by other Django view mixins it is relatively easy to combine search functionality
with other mixins and views.

1.2.4 Management commands
show_mapping

Make a change and wonder why your results don’t look as expected? The management command show_mapping will
print the current mapping for your defined search index(es). At the least it may show that you’ve simply forgotten to
update your index with new mappings:

python manage.py show_mapping

By default this will display the existing_mapping which shows the index, document type, and document properties.:

{
"haystack": {
"modelresult": {
"properties": {
"is_active": {

1.2. Features and goals 5

http://django-haystack.readthedocs.org/en/latest/searchqueryset_api.html#load-all

elasticstack Documentation, Release 0.1.0

"type": "boolean"
b
"text": {

"type": "string"

by
"published": {
"type" . "date" ,
"format": "dateOptionalTime"

}

If you provide the —detail flag this will return only the field mappings but including additional details, such as boost
levels and field-specific analyzers.:

{

"is_active": {
"index": "not_analyzed",
"boost": 1,
"store": "yes",
"type": "boolean"

}I

"text": {
"index": "analyzed",
"term_vector": "with_positions_offsets",
"type": "string",
"analyzer": "custom_analyzer",
"boost": 1,
"store": "yes"

by
"pub_date": {

"index": "analyzed",
"boost": 1,

"Store": "yeS",
lltype": "date"

show_document

Provided the name of an indexed model and a key it generates and prints the generated document for this object:

python manage.py show_document myapp.MyModel 19181

The JSON document will be formatted with ‘pretty’ indenting.

1.3 Stability, docs, and tests

The form, view, and backend functionality in this project is considered stable. Test coverage is not substantial, but is
run against Django 1.4 through Django 1.6 on Python 2.6 and Python 2.7, Django 1.5 and Django 1.6 on Python 3.3,
and Django 1.6 on PyPy.

6 Chapter 1. elasticstack

elasticstack Documentation, Release 0.1.0

1.3.1 Why not add this stuff to Haystack?

This project first aims to solve problems related specifically to working with ElasticSearch. Haystack is 1) backend
agnostic (a good thing), 2) needs to support existing codebases, and 3) not my project. Most importantly, adding these
features through a separate Django app means providing them without needing to fork Haystack. Hopefully some of
the features here, once finalized and tested, will be suitable to add to Haystack.

1.3. Stability, docs, and tests 7

elasticstack Documentation, Release 0.1.0

8 Chapter 1. elasticstack

CHAPTER 2

Installation

2.1 Base installation

Installation is straightforward. With your virtualenv activated, use pip to install:

$ pip elasticstack

Then add elasticstack to your Django project’s INSTALLED_APPS:

INSTALLED_APPS = (
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sites",
"haystack",

"elasticstack",

)I

Adding the app to your INSTALLED_APPS is necessary to make the management commands available.

2.2 Haystack connection settings

In order to use the configurable ElasticSearch indexing settings you will need to make sure that you’re using the project
defined backend. Change this:

HAYSTACK_CONNECTIONS = {
"default’: {
"ENGINE’ : "haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine’,
"URL’: "http://127.0.0.1:9200/",
" INDEX_NAME’ : "haystack’,
}I
}

To this:

HAYSTACK_CONNECTIONS = {
"default’: {
"ENGINE’ : 'elasticstack.backends.ConfigurableElasticSearchEngine’,
"URL’: '"http://127.0.0.1:9200/",
"INDEX_NAME’ : "haystack’,
}I

http://www.virtualenv.org/en/latest/

elasticstack Documentation, Release 0.1.0

For a full explanation of why and how to customize your index settings, see the Configurable index mapping docu-
mentation.

10 Chapter 2. Installation

CHAPTER 3

Configurable index mapping

ElasticSearch gives you fine grained control over how your indexed content is analyzed, from choosing between built-
in analyzers, choosing options for built-in analyzers, and creating your own from existing tokenizers and filters.

Note: An analyzer is a combination of a tokenizer and one or more text filters. The tokenizer is responsible for
breaking apart the text into individual “tokens”, which could be words or pieces of words. The filters are responsible

for transforming and removing tokens from the indexed content, e.g. making all text lowercase, removing common
words, indexing synonyms, etc.

The default ElasticSearch backend in Haystack doesn’t expose any of this configuration however. The search mapping
provided by this backend maps non-nGram text fields to the snowball analyzer. This is a pretty good default for
English, but may not meet your requirements and won’t work well for non-English languages.

The elasticstack backend takes advantage of the Haystack backend’s structure to make it relatively simple to override
and extend the search mapping in your project.

elasticstack lets you manage your index mapping in three ways:
1. Changing the default analyzer
2. Specifying an analyzer for an individual Searchindex field

3. Specifying a complete search mapping including custom analyzers

3.1 Haystack configuration

First, you’ll need to ensure that you’re using the elasticstack backend, not Haystack’s. Your
HAYSTACK_CONNECTIONS should look something like this, so that the ENGINE value for any defined search index
is using the elasticstack search engine class.:

HAYSTACK_CONNECTIONS = {
"default’: {
"ENGINE’ : 'elasticstack.backends.ConfigurableElasticSearchEngine’,
"URL’: 'http://127.0.0.1:9200/",
"INDEX_NAME’ : "haystack’,
}I
}

And of course make sure you’ve followed the instructions for installing Haystack and your ElasticSearch instance.

Important: All of the options described here depend on this configurable search engine backend.

11

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/analysis-analyzers.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/analysis-analyzers.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/analysis-snowball-analyzer.html
http://django-haystack.readthedocs.org/en/latest/tutorial.html

elasticstack Documentation, Release 0.1.0

3.2 Chaning the default analyzer

Haystack will map the snowball analyzer to non-nGram text content by default.

You can specify an alternate analyzer using the ELASTICSEARCH_DEFAULT_ANALYZER setting in your settings.py
file:

ELASTICSEARCH_DEFAULT_ANALYZER = ’“stop’

Any field that would have been analyzed with the snowball analyzer will now use the stop analyzer.

3.3 Choosing a field-specific analyzer

Even with a new default analyzer you may want to change this on a field by field basis as fits your needs. To do so,
use the fields from elasticstack.fields to specify your analyzer with the analyzer keyword argument:

from haystack import indexes

from haystack.fields import CharField as BaseCharField
from elasticstack.fields import CharField

from myapp.models import MyContent

class MyContentIndex (indexes.SearchIndex, indexes.Indexable):
text = CharField(document=True, use_template=True,
analyzer='stop’)
body = BaseCharField (use_template=True)

def get_model (self):
return MyContent

Now the fext field will be indexed using the stop analyzer, and the body field will be indexed using the default analyzer.

3.4 Custom analyzers and additional configuration

If instead you need to configure an analyzer, define your own, or in any way further customize the search mapping,
you can customize the base analysis settings for your index.

You do this by creating a dictionary of analysis settings in your settings.py file for the ELASTIC-
SEARCH_INDEX_SETTINGS setting.

This example takes the default mapping and adds a synonym analyzer.

ELASTICSEARCH_INDEX_ SETTINGS = {
"settings’: {
"analysis": {
"analyzer": {

"synonym_analyzer" : {
"type": "custom",
"tokenizer" : "standard",
"filter" : ["synonym"]

}I

"ngram_analyzer": {

"type": "custom",
"tokenizer": "lowercase",
"filter": ["haystack_ngram", "synonym"]

by

12 Chapter 3. Configurable index mapping

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/analysis-stop-analyzer.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/analysis.html

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

52

53

elasticstack Documentation, Release 0.1.0

"edgengram_analyzer": {
"type": "custom",
"tokenizer": "lowercase",
"filter": ["haystack_edgengram"]

}I
"tokenizer": {
"haystack_ngram_tokenizer": {
"type": "nGram",
"min_gram": 3,
"max_gram": 15,
}I
"haystack_edgengram_tokenizer": {
"type": "edgeNGram",
"min_gram": 2,
"max_gram": 15,
"side": "front"

}I
"filter": {

"haystack_ngram": {
"type": "nGram",
"min_gram": 3,
"max_gram": 15

}V

"haystack_edgengram": {
"type": "edgeNGram",
"min_gram": 2,
"max_gram": 15

}I

"synonym" : {

"type" : "synonym",
"ignore_case": "true",
"synonyms_path" : "synonyms.txt"

}

The two additions to this mapping are the synonym_analyzer at line 5 and the synonym filter at line 45.

Adding this mapping in and of itself does nothing more than make your new analyzer available. To use it you either
need to change your ELASTICSEARCH_DEFAULT_ANALYZER or specify the analyzer in the search index field.

3.5 Realizing custom changes

Even with all of these changes you won’t notice any difference in your queries until you’ve reindexed your content.
The mappings for your search index define how that content is handled when it goes into the index; it does nothing for
content already there.

3.5. Realizing custom changes 13

elasticstack Documentation, Release 0.1.0

14 Chapter 3. Configurable index mapping

CHAPTER 4

Django CBYV style views

Haystacks’s class based views predate the inclusion of CBVs into the Django core and so the paradigms are different.
This makes it harder to impossible to make use of view mixins.

The bundled SearchView and FacetedSearchView classes are based on django.views.generic.edit. FormView using the
SearchMixin and FacetedSearchMixin, respectively. The SearchMixin provides the necessary search related attributes
and overloads the form processing methods to execute the search.

The SearchMixin adds a few search specific attributes:
* load_all - a Boolean value for specifying database lookups
* queryset - a default SearchQuerySet. Defaults to EmtpySearchQuerySet

e search_field - the name of the form field used for the query. This is added to allow for views which may have
more than one search form. Defaults to g.

Note: The SearchMixin uses the attribute named queryset for the resultant SearchQuerySet. Naming this attribute
searchqueryset would make more sense semantically and hew closer to Haystack’s naming convention, however by

using the queryset attribute shared by other Django view mixins it is relatively easy to combine search functionality
with other mixins and views.

15

http://django-haystack.readthedocs.org/en/latest/searchqueryset_api.html#load-all

elasticstack Documentation, Release 0.1.0

16 Chapter 4. Django CBV style views

CHAPTER 5

Management commands

The extra management commands are small tools to help in diagnosing problems with unexpected search results, by
showing you how your data is actually mapped for ElasticSearch and how a specific model instance (with a matching
Searchlndex class) is mapped as an example.

5.1 show_mapping

Make a change and wonder why your results don’t look as expected? The management command show_mapping will
print the current mapping for your defined search index(es). At the least it may show that you’ve simply forgotten to
update your index with new mappings:

python manage.py show_mapping

By default this will display the existing_mapping which shows the index, document type, and document properties.:

{
"haystack": {

"modelresult": {
"properties": {
"is _active": {
"type": "boolean"
}I
"text": {
"type": "string"

}o
"published": {
"type": "date",
"format": "dateOptionalTime"

}

If you provide the —detail flag this will return only the field mappings but including additional details, such as boost
levels and field-specific analyzers.:

{

"is_active": {
"index": "not_analyzed",
"boost": 1,
"store": "yes",

17

elasticstack Documentation, Release 0.1.0

"type": "boolean"
}I
"text": {
"index": "analyzed",
"term_vector": "with_positions_offsets",
"type": "string",
"analyzer": "custom_analyzer",
"boost": 1,
"store": "yes"

b
"pub_date": {

"index": "analyzed",
"boost": 1,

"store": "yes",
"type": "date"

5.2 show_document

Provided the name of an indexed model and a key it generates and prints the generated document for this object:

python manage.py show_document myapp.MyModel 19181

The JSON document will be formatted with ‘pretty’ indenting.

18 Chapter 5. Management commands

CHAPTER 6

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

6.1 Types of Contributions

6.1.1 Report Bugs

Report bugs at https://github.com/bennylope/elasticstack/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

6.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

6.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

6.1.4 Write Documentation

elasticstack could always use more documentation, whether as part of the official elasticstack docs, in docstrings, or
even on the web in blog posts, articles, and such.

6.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/bennylope/elasticstack/issues.

If you are proposing a feature:

19

https://github.com/bennylope/elasticstack/issues
https://github.com/bennylope/elasticstack/issues

elasticstack Documentation, Release 0.1.0

 Explain in detail how it would work.
» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

6.2 Get Started!

Ready to contribute? Here’s how to set up elasticstack for local development.
1. Fork the elasticstack repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/elasticstack.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv elasticstack
$ cd elasticstack/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python
versions with tox:

$ flake8 elasticstack tests
$ python setup.py test
S tox

To get flake8 and tox, just pip install them into your virtualenv.
6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

6.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:
1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check https://travis-
ci.org/bennylope/elasticstack/pull_requests and make sure that the tests pass for all supported Python versions.

20 Chapter 6. Contributing

https://travis-ci.org/bennylope/elasticstack/pull_requests
https://travis-ci.org/bennylope/elasticstack/pull_requests

elasticstack Documentation, Release 0.1.0

6.4 Tips

To run a subset of tests:

$ python -m unittest tests.test_elasticstack

6.4. Tips 21

elasticstack Documentation, Release 0.1.0

22 Chapter 6. Contributing

CHAPTER 7

Credits

7.1 Development Lead

* Ben Lopatin @bennylope

7.2 Contributors

¢ Basil Shubin @bashu

23

elasticstack Documentation, Release 0.1.0

24 Chapter 7. Credits

CHAPTER 8

History

8.1 0.0.6 (2013-10-04)

* Require pyelasticsearch for installation

8.2 0.0.5 (2013-09-28)

¢ Fixed reference to old method

8.3 0.0.4 (2013-09-28)

 Search form can search using specified field name

¢ Added management command to output mapping for an individual document

8.4 0.0.3 (2013-09-28)

¢ Added default analyzer setting

8.5 0.0.2 (2013-09-28)

 Packaging fix

8.6 0.0.1 (2013-09-28)

e Initial release

25

	elasticstack
	Requirements
	Features and goals
	Stability, docs, and tests

	Installation
	Base installation
	Haystack connection settings

	Configurable index mapping
	Haystack configuration
	Chaning the default analyzer
	Choosing a field-specific analyzer
	Custom analyzers and additional configuration
	Realizing custom changes

	Django CBV style views
	Management commands
	show_mapping
	show_document

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	Development Lead
	Contributors

	History
	0.0.6 (2013-10-04)
	0.0.5 (2013-09-28)
	0.0.4 (2013-09-28)
	0.0.3 (2013-09-28)
	0.0.2 (2013-09-28)
	0.0.1 (2013-09-28)

